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A new candidate source of gravitational radiation is described: the nearly-perfect harmonic series
from individual loops of cosmic string. It is argued that theories with light cosmic strings give
rise to a population of numerous long-lived stable loops, many of which cluster gravitationally in
galaxy halos along with the dark matter. Each cosmic string loop produces a spectrum of discrete
frequencies in a nearly perfect harmonic series, a fundamental mode and its integer multiples. The
gravitational wave signal from cosmic string loops in our Galactic halo is analyzed numerically and
it is found that the for light strings, the nearest loops typically produce strong signals which stand
out above confusion noise from Galactic binaries. The total population of cosmic string loops in the
Milky Way also produces a broad signal that acts as a confusion noise. Both signals are enhanced
by the clustering of loops gravitationally bound to the Galaxy, which significantly decreases the
average distance from the solar system to the nearest loop. Numerical estimates indicate that for
dimensionless string tension Gµ/c2 < 10−11, many loops are likely to be found in the Galactic halo.
Lighter strings, down to Gµ/c2

≈ 10−19, are detectable by the Laser Interferometer Space Antenna

(LISA). For these light strings, the fundamental and low-order harmonics of typical loops often lie
in the band where LISA is sensitive, 0.1 to 100 mHz. The harmonic nature of the cosmic string loop
modes leaves a distinct spectral signature different from any other known source of gravitational
waves.

PACS numbers: 11.27.+d, 98.80.Cq, 98.70.Vc, 04.30.Db

I. INTRODUCTION

Topological defects produced during cosmic phase
transitions are a standard component of many field and
brane theories and cosmologies. Often they take the form
of macroscopically extended classical one dimensional ob-
jects, with microscopic radius, called cosmic strings. The
cosmological evolution of strings forms a population of
quasi-stable loops that lose energy mainly by gravita-
tional waves [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36]. This paper describes a new way
in which these gravitational waves may be observed: a
regime in which radiation from individual loops can ap-
pear as perfect harmonic series in an observed frequency
spectrum.

String loops oscillate, radiate gravitational waves and
shrink until they completely decay. The center of mass
speed of a loop when it forms is of the order of unity.
After it stops interconnecting with the rest of the string
network, a loop’s velocity decays inversely proportional
to the scale factor. At late times, the primordial velocity
is negligible and the loop population clusters in almost
the same way as the dominant cold, collisionless dark
matter [37]. In the case of light strings, for which loops
are small and numerous, a galaxy halo can contain a very
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large number of loops [38]. They are concentrated to high
density, so the mean distance to the nearest loop is much
smaller than the cosmic mean.

A cosmic string loop produces a spectrum of dis-
crete frequencies [1, 39] which may be detectable if it
is close enough. The spectrum of any loop is given by a
sum over a nearly perfect harmonic series of frequencies
fn = 2nc/L, where L is the length of the string loop.
This distinctive property is unlike any other astrophysi-
cal source of gravitational waves and if observed, would
provide convincing evidence of the existence of cosmic
strings, as well as detailed information about their astro-
physical behavior.

The power from each discrete mode n of a loop is given
by,

Ėn = PnGµ2c, (1)

where µ is the mass (energy) density of the string. We
define γ =

∑

Pn. Numerical simulations indicate γ is ap-
proximately 50 to 100. We use a value of 50 for this study.
The power in each mode depends upon the particular os-
cillation pattern of a string loop, but the general solution
of a sum of harmonic modes does not depend upon any
particular model. For the illustrative estimates in this
paper we assume a very simple model, again motivated
by numerical estimates: the mean power of an ensem-
ble scales as 〈Pn〉 ∝ n−4/3. Loops clustered around the
Milky Way halo, most of which are too distant to detect
individually, taken together create an unresolved back-
ground of gravitational waves, akin to the white dwarf
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binaries [40, 41]. We also estimate this confusion back-
ground.

The new effects are most important for cosmic string
loops with lower string tensions Gµ/c2 < 10−12 [42, 43]
and for stable loops formed at a significant fraction,
α = 0.1, of the horizon [42, 43, 44]. In this situation, we
find that cosmic strings are an important new source at
the frequencies 0.1 Hz to 10 mHz band where Laser In-
terferometer Space Antenna (LISA) [45, 46] will be most
sensitive. The extension into this regime is all the more
relevant given the current limits set on cosmic string ten-
sions via SDSS, WMAP, and millisecond pulars [47, 48].
Since the results depend on the size distribution of stable
loops [35, 44], a number of possibilities are considered in
the parameter studies here.

II. DISTRIBUTION OF LOOPS

The average number density of loops between size L
and L + dL is n(L)dL, computed numerically. The loops
are assumed to be clustered around galaxies in the same
way as the dark matter. The number density in the
galaxy is matched to the dark matter halo, given by the
NFW density distribution ρNFW (r) [49, 50, 51, 52, 53].
The number density is then a function of the length of
loops and distance from the center of the galaxy n(L, r).

A. Loop Density

We start by figuring out the size of the loops at the
fundamental frequency:

L = 2c/f1 (2)

Using the one-scale model [54, 55], loops form with size

L ≈ αcH−1(t) and start to decay at a rate L̇ = −γGµ.
Loops created at a time tc will be of the size L(tc, t) at the
time t. At the present time to we find the fundamental
frequency given by:

f1 =
2c

αcH−1(tc) − γGµ(to − tc)/c
. (3)

The number density at to, for time of creation tc is given
by:

n(to, tc) =
Nt

α

(

H(tc)

c

)3 (

a(tc)

a(to)

)3

, (4)

Using the time tc we solve numerically to find the number
density.

To illustrate with typical numerical values: the average
distance between galaxies is 5 Mpc, the number of loops
within the galaxy for Gµ = 10−12 and a fundamental
frequency of 1 mHz is approximately 104.

1. Density in the Galaxy

The density of galactic string loops is matched to the
dark matter distribution in the Milky Way using the
NFW density ρNFW (r):

ρNFW (r) =
ρs

x(1 + x)2
, (5)

x =
r

rs
, (6)

where ρs and rs are determined by observation. Repre-
sentative values are given by [50] using the favored model,
e.g. rs=21.5 kpc. From above we see that for r << rs,
ρ ∝ r−1 and for r >> rs, ρ ∝ r−3.

From the previous example using strings of tension
Gµ = 10−12, N = 104, rt/rs = 10, and rs = 21.5 kpc, we
find at the earth’s distance from the galactic center, r = 8
kpc, a value of n ≈ 9.4×10−2 kpc−3, or n−1/3 ≈ 2.2 kpc,
an “average” distance to the nearest loop. The nearst
loop is likely closer as the distribution is not constant
over this range of position.

The number density of loops in the Milky Way is
strongly influenced by the size and mass density of the
cosmic string loops. Tables I–III give results for the
number of loops in the Milky Way for various param-
eterizations of the string loops. The results clearly show
the large predominance of loops for very light and large
strings.

III. POWER FROM EACH LOOP

A loop radiates power in each mode n modeled by,

Ėn(r′) ∝ Ėn

r′2
, (7)

where Ėn is power radiated per mode from a loop. The
total power is

Ė = γGµ2 =
∑

PnGµ2, (8)

where γ is found to be between 50 and 100, and the Pn are
power coefficients of the individual modes. Note that the
power radiated is independent of the loop size. To first
order we ignore directionality of the emitted gravitational
radiation.

Each loop has a spectrum given by a set of power co-
efficients, Pn, and the average sum for the population
〈∑ Pn〉 ≈ γ is fixed by the statistical properties of the
strings. This is an average over a wide array of loops:
individual loops vary from this. For most loops the most
power is in the fundamental mode and the lowest modes,
while the higher modes have significantly reduced power.

For a given mode the quality factor is given by,

Qn =
4πn

PnGµ
. (9)
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For light strings with Gµ = 10−12 we find,

Qn ≈ 1012
n

Pn
. (10)

For the fundamental mode Pn is of order unity at most,
so Q is large, and increases with higher n. Thus the
harmonic series is almost perfect and the lines extremely
narrow. This justifies the use of delta functions in other
applications.

Given the extremely large value of Qn the signal from
each mode in the loop is practically constant for the du-
ration of observation with respect to decay. Potential fre-
quency shifts due to path differences from gravitational
lensing, gravitational doppler effect, Newtonian acceler-
ation in the Galaxy, and relative motion have not been
analyzed [30].

IV. STRAIN PRODUCED BY

GRAVITATIONAL RADIATION

The relative weakness of gravitational waves from cos-
mic strings allows the use of linearized gravity. Assuming
plane wave solutions, we find for the energy flux:

Fgw =
π

4G
f2

nh2

n, (11)

where hn is the root-mean-square strain, and using c = 1.
Inserting c we find :

hn =
√

Pn
c

π

Gµ

c2

1

rfn
, (12)

hn = 3.095× 10−12
√

Pn [Gµ(c = 1)] ×
(

1Hz

fn

) (

1kpc

r

)

. (13)

For Gµ = 10−12, f=1 mHz, and r=1 kpc, we find h1 ≈
10−21, within the detection limits of LISA.

V. SPECTRUM OF A SINGLE LOOP

Using previous results for the strain produced by a
gravitational wave, we can add the harmonic time de-
pendence to find the strain at each mode for the result:

hn(t) =
c
√

Pn

πfn

Gµ

c2

1

r
e−i2πfnt (14)

Again, the Pn are the “power coefficients” estimated to
scale in the mean as n−4/3. Recall that the sum of co-
efficients is given by

∑

Pn = γ. In practice most of the
power is in the fundamental mode, so the the power from
lower modes drops off, allowing truncation of the sum at
a reasonable value of n. As an example, we set teh am-
plitudes equal to the sample mean:

Pn = P1n
−4/3, (15)

and P1 = 18. At n = 20 we find
∑

Pn ≈ 45, giving a
reasonable estimate. For a single loop the total strain
will be a sum of all the modes,

h(t) =

∞
∑

n=1

hn(t). (16)

In practice a suitable cutoff is used to facilitate numerical
computations.

A. Calculation of Single Loop Spectrum using

Discrete Fourier Transform

Since the signal detected by LISA will be as a discrete
set of points, it is useful to take a discrete Fourier trans-
form of a sample signal. In general LISA has a sam-
pling rate of fsamp = 10Hz, which leads to large num-
bers of data points for integration times of one to three
years. This large number of data points also leads to a
very clear signal due to the harmonic nature of the grav-
itaional waves produced by the cosmic strings.

Given the signal h(j) where j is an integer and the jth

data point corresponding to h(t) = h(j∆T ), we define
the discrete-time Fourier transform as [57],

h̃(k) =
1√
T

N
∑

j=1

h(j)e−i2π (j−1)(k−1)
N . (17)

N is the total number of data points and k is the integer
value in Fourier frequency space. Note the introduction
of the square root on the integration time T , which is
standard in the sensitivity curves for LISA [56].

The gravitational wave signal from the cosmic strings
has the form,

h(j) =

∞
∑

n=1

c
√

Pn

πfn

Gµ

c2

1

r
sin(2πjωn/N), (18)

where ωn is not the physical frequency, but the discrete
time frequency, which is different than the physical fre-
quency given by fn = 2nc/L, and Pn is the magnitude
of the nth power mode. Using Pn = P1n

−4/3 this is then
inserted into Eq. 17.

Investigations of the parameter space of the loops in-
dicates the heaviest individually detectable loops are of
tension Gµ ≈ 10−10 for α = 0.1, due to their reduced
numbers in the Milky Way, see Table I. Shown in Fig. 1
is the largest likely signal from an individual loop at the
frequency 10−4 Hz. This signal stands above the noise
from binaries.

For the large loops, α = 0.1, it is found that the lightest
individually detectable loops have tension Gµ > 10−16.

The average size α of the loops as a fraction of the
horizon when they formed affects the number of loops
currently radiating. For large α the number of loops
remaining is large, thus at a given frequency the distance
to the nearest loop is shorter. This is indicated in Fig. 2.
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FIG. 1: Plot of the cosmic string loop spectrum for Gµ =
10−11, α=0.1, at a distance of r = 7 kpc. Observation time
is T = 1 year, the sampling rate is 0.1 Hz, P1 = 18, and the
fundamental frequemcy is f1 = 10−4 Hz. The first 10 modes
are shown. This signal stands above the confusion noise from
galactic binaries which is shown on the graph.
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FIG. 2: Plot of two cosmic string loop spectra with Gµ =
10−12: the “thin” spectrum α=0.1 at a distance r = 2.2 kpc
from the solar system, and the “thick” spectrum α = 10−5

with r=8.9 kpc.

Note the amplitude varies as r−1, which shows only a
small difference on our log plots. The total number of
loops is significantly larger for large α.

The increase in the radiated power of the heavier string
loops results in greatest variation in signals potentially
detectable. Fig. 3 shows the effect for string of tension
Gµ = 10−16. The heavier string loops are, on average,
farther away but their larger output makes up for in-
creased distance.

The signal to noise for a loops is given by the standard
formula for a periodic source [59],

SNR2 = |ho|2
T

Sn(f)
, (19)

where T is the integration time and Sn(f) is the noise
spectral density of the detector. For LISA the curve for
Sn(f) is given in [56].

As an example we find for Gµ = 10−12, α = 0.1, and
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-20

-18

-16

-14
logHShHf L

1�2 Hz-1�2

FIG. 3: Plot of the Fourier spectrum of cosmic string loops
with tension Gµ = 10−16 and a distance of r = 0.066 kpc.
The fundamental frequemcy is f1 = 1 mHz and the first 10
modes are shown. Note the heavier loops (Gµ = 10−12) have
a much larger signal, in spite of their greater distance from
the solar system. The confusion noise from galactic binaries
is also shown. At this fundamental frequency, the loop is not
detectable, but shifted to higher frequencies it is.

f1 = 10−3 that the SNR ≈ 105.

VI. TOTAL GALACTIC SIGNAL

Another key ingredient is the gravitational wave signal
from loops within the galactic halo. These loops are not
resolvable on an individual basis, but do contribute a
significant gravitational wave signal. The isotropic and
stationary background from both current and evaporated
loops has been calculated previously. To this background
we add the signal from loops within the dark matter halo
of the milky way, which is not isotropic from the solar
system.

We sum over distances in bins of ∆r′ from the earth
out to the edge of the galaxy. The total flux Fnet of grav-
itational wave energy at a given frequency from strings
of frequency fk = 2k/L in the kth mode, within volume
dV ′ a distance r′ from the Earth is given by,

Fgw(fk)net =

∫

F gw
k (r′) n(x′, L) d3

x
′. (20)

Here we use k to label the modes to avoid confusion with
the number density n(L).

From the total flux at a given frequency we find the
strain,

h(fn) =
2

fn

√

GFgw(fn)net

πc3
, (21)

which should be interpreted as the rms strain at a fre-
quency fn.

Results of numerical calculations are plotted in
Figs. 4, 5, and 6.
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FIG. 4: Plot of the cosmic string loop strain spectrum for
large loops α = 0.1 in the galaxy. The top curve is of string
tension Gµ = 10−12 and the bottom curve is Gµ = 10−20,
in increments of 102. Also included are the LISA sensitivity
curve with an integration time of 1 year, and the galactic
white dwarf noise. For each loop only the fundamental mode
is included.
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FIG. 5: Plot of the cosmic string loop strain spectrum for
small loops α = 10−5 in the galaxy. The top curve is of string
tension Gµ = 10−12 and the bottom curve is Gµ = 10−20,
in increments of 102. Also included are the LISA sensitivity
curve with an integration time of 1 year, and the galactic
white dwarf noise. For each loop only the fundamental mode
is included.

VII. CONCLUSION

These results suggest a new way to observe light cosmic
strings. They indicate that individual cosmic string loops
are detectable due to the local concentration of loops
with Galactic dark matter. They display a unique and

distinctive harmonic spectrum which requires no special
template fitting to detect, only a Fourier transform of the
signal. The large quality factor (of order 1/Gµ) ensures
the frequency spectrum is almost static over the several
years of observation, further increasing detectability of
the signal.

This study has taken a somewhat simplified approach
to the distribution of the loops, simply matching them
to the dark matter halo of the Milky Way. The model
of the loops is also oversimplified but adequate for the

-8 -6 -4 -2 2 4
logHf L Hz

-20

-15

logHhL

FIG. 6: Plot of the cosmic string loop strain spectrum for
small and large loops in the galaxy. It is assumed 90% of
the loops shatter into small loops of α = 10−5. The top
curve is of string tension Gµ = 10−12 and the bottom curve
is Gµ = 10−20, in increments of 102. Also included are the
LISA sensitivity curve with an integration time of 1 year,
and the galactic white dwarf noise. For each loop only the
fundamental mode is included.

purpose of estimating detectability.

For the total galactic signal, we estimate that Galac-
tic string backgrounds are detectable by LISA down to
Gµ = 10−19. This is significantly more sensitive than
previous results from the exragalactic stochastic back-
ground. Even though the broader cosmological impact
of the loops is minimal, they still may provide a definite
gravitational wave signal of new physics.
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TABLE I: Number of Loops in the Milky Way for the given
fundamental frequencies and α=0.1

Gµ f(Hz) 10−4 10−3 10−2 10−1

10−11 3 ×102 3 ×102 3 ×102 3 ×102

10−12 1×104 1×104 1×104 1×104

10−13 3 ×105 3 ×105 3 ×105 3 ×105

10−14 9 ×106 1×107 1×107 1×107

10−15 1×108 3 ×108 3 ×108 3 ×108

10−16 3 ×108 4 ×109 9 ×109 1×1010

TABLE II: Number of Loops in the Milky Way for the given
fundamental frequencies, varying α and Gµ = 10−12

α f(Hz) 10−4 10−3 10−2 10−1

10−1 1×104 1×104 1×104 1×104

10−2 3×103 3×103 3×103 3×103

10−3 1×103 1×103 1×103 1×103

10−4 4×102 4×102 4×102 4×102

10−5 2×102 2×102 2×102 2×102

10−6 1×102 1×102 1×102 1×102

TABLE III: Number of Loops in the Milky Way for the given
fundamental frequencies, varying α and Gµ = 10−16

α f(Hz) 10−4 10−3 10−2 10−1

10−1 3×108 4 ×109 9×109 1×1010

10−2 1×108 1×109 3×109 4×109

10−3 3 ×107 4 ×108 9 ×108 1×109

10−4 1 ×107 1×108 3×108 3×108

10−5 3 ×106 4×107 9×107 1 ×108

10−6 1 ×106 1×107 3×107 3×107


